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ABSTRACT

Multimodal data plays a crucial role in our daily lives. It comprises heterogeneous data, such as audio,
visual, language, etc., that surrounds us in the world. Machine learning for single modality data
can result in limitations to performance owing to a lack of information, while many applications are
more suitable to be modeled as multimodal learning tasks. Audiovisual learning and vision-language
modeling have been extensively studied, and recent research is starting to focus on audio-visual-
language joint modeling. Currently, there is no review focused on audio-visual-language joint
modeling, even though audio, visual, and language modalities frequently co-occur. Therefore, we
survey audio, visual, and language trimodal learning to understand the ability of multimodal learners.
Problem formulations and benchmark datasets are introduced. We summarize the state-of-the-art
methods for each task with corresponding evaluation criteria, and present current trends of multitask
learning, larger model size, as well as pretrain-finetune training paradigm.

Keywords Deep Learning · Multimodal Learning · Audio-Visual-Language Modeling

1 Introduction

Multimodal machine learning has appeared as a crucial paradigm for modeling real-world scenarios that inherently
contain heterogeneous and interconnected signals across multiple modalities [1]. Applications, ranging from technology
to healthcare, as depicted in Figure 1c, inherently interact with various types of information. These applications require
an understanding of multiple modalities, especially audio, visual, and language data, which provides rich semantic
contexts for more accurate perception, reasoning, and decision-making across diverse tasks.

Although there is no review specifically on the topic of trimodal modeling, extensive reviews have been published on
the general topic of multimodal learning, driven by the rapid growth of the field.

Overly General Reviews Some reviews primarily emphasize general methodologies, with limited discussion of
specific downstream tasks. For instance, Liang et al. review six technical challenges, including representation, alignment,
reasoning, generation, transference, and quantification [1]. In practice, however, some of these aspects are deeply
intertwined, especially when using deep learning methods, making them difficult to treat separately. Additionally, some
literature includes an excessive number of modalities. For example, Jabeen et al. cover various physical signals and
heterogeneous data types [2]. Several signals lack semantic information and exist in lower dimensions. Integrating such
modalities into a unified framework remains challenging. A common approach involves hard-coded systems or separate
models within an engineering pipeline, limiting their generalizability. An overly general survey might not truly bring
us specific insights on real-world applications with a requirement for semantic-rich information. Despite Jiao et al.
providing a comprehensive discussion on multimodal fusion, it does not address engineering challenges in real-world
scenarios, such as lightweight fusion on edge devices with computational constraints and cross-modal synchronization
issues [3].

Overly Specific Reviews Other reviews were limited to a specific task. For instance, Zhu et al. primarily analyze
visual modalities while treating others as auxiliary [4]. Sura reviews multimodal clustering [5]. Similarly, Yu et al.
focus solely on continual learning [6]. Furthermore, some reviews consider only two modalities, which limits their
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applicability. For instance, Ahmed explores audiovisual learning without considering language [7]. Liu et al. focus on
vision-language applications in medicine [8], and Lu reviews question-answering tasks [9]. Both neglect the role of
audio information, which is prevalent in real-world scenarios and provides essential semantic information.

Pre-Transformer Reviews Review papers are time-dependent. In the past five years, Transformer models have been
widely adopted in various modalities beyond text, such as vision [10] and audio [11], allowing the construction of
models under a unified framework. In the last two years, large models have demonstrated remarkable performance
in language tasks and advances in reasoning. On the other hand, they require increased computational resources.
Multimodal large models have emerged as a new research direction, meaning that older reviews do not capture these
recent developments [2, 12, 13, 14, 15].

Since vision-language learning and audiovisual learning have been extensively researched, and these modalities are
frequently found together, it is natural to study audio-visual-language modeling jointly. Given these limitations in
existing reviews, a novel survey is needed to address the recent advancements, integrate audio-visual-language triple
modalities effectively, and provide insights into various downstream tasks with new challenges. Thus, in this survey, we
concentrate on audio-visual-language modeling approaches within the range from 2020 to 2025, covering methods,
trends, and challenges in terms of feature extraction, fusion, tasks, datasets, and models.

Through organizing and analyzing landmark research and recent literature, we answer the following questions:
Q1 (Tasks): What representative downstream tasks motivated by practical demands are used to evaluate joint audio-
visual-language models across understanding and generation?
Q2 (Data): What benchmark datasets and evaluation metrics are commonly used for these tasks, and how suitable are
they for joint audio-visual-language modeling?
Q3 (Methods): What state-of-the-art approaches have been proposed for joint audio-visual-language modeling? How
do they compare in terms of performance, efficiency, and modality integration?
Q4 (Trends): What are the recent trends in model structures and training paradigms for joint audio-visual-language
learning?
Q5 (Challenges): What are the major obstacles to understanding and achieving practically deployable joint modeling
across audio, visual, and language modalities in real-world environments?

To this end, we conduct a review of recent research in audio-visual-language joint modeling. We collect and analyze
research from 2020 to 2025, categorizing the keywords by their statistics. As shown in Figure 1, within multimodal
learning studies involving audio, visual, and language modalities, the proportions of papers for each modality are
roughly comparable. Two core techniques underpinning multimodal learning are alignment and fusion. Alignment
establishes correspondences across modalities, such as feature-space alignment, semantic alignment, or temporal
alignment, whereas fusion integrates information from multiple modalities to produce more accurate representations or
outputs. Among these, fusion has been discussed more extensively in the literature. We also analyze application studies
and find that multimodal learning applications are distributed across various industries. Meanwhile, the benchmark
tasks used in research are quite diverse, with Multimedia Event Recognition (MER), Cross-Modal Retrieval (CMR),
and Emotion Learning (EL) being the most extensively studied. These observations provide a broad context for our
subsequent survey of representative tasks, benchmarks, and methodologies.

The selection of studies for this review followed systematic inclusion and exclusion criteria for audio-visual-language
modeling research published between 2020 and 2025. Included papers were required to present deep learning
methodologies utilizing all three modalities (audio, visual, and textual) as inputs or outputs, published in top-tier
venues such as CVPR, ICCV, ECCV, NeurIPS, ICML, ICLR, ACL, EMNLP, ICASSP, INTERSPEECH, ACM
MM, and leading AI journals. Studies must demonstrate empirical contributions with quantitative evaluation across
established multimodal tasks such as action recognition, emotion recognition, question answering, cross-modal retrieval,
localization, captioning, and generation. Only English-language peer-reviewed articles were considered. Exclusion
criteria eliminated purely theoretical work without experimental validation, and studies using fewer than three modalities.
The selection process employed iterative expansion from seminal works through systematic citation tracking to ensure
comprehensive coverage of the field.

Our analysis reveals several key trends: audio-visual-language modeling has benefited from multitask learning and
multi-stage training [16, 17, 18]; The integration of large language models into audio-visual-language reasoning has
gained significant traction. Pretraining and finetuning have emerged as prevailing paradigms in recent research.

Our key contributions are summarized as follows:

• We present a comprehensive and up-to-date survey on audio-visual-language multimodal tasks and representa-
tive models, filling a gap in prior work.

• We discuss several trends from bimodal to trimodal modeling.
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Figure 1: Statistical analysis of recent literatures. The figures show the frequency of the papers that are collected by
audio, visual, and language multimodal learning over the past 5 years. In Figure 1c, from top to bottom: Advanced
industries; Business, legal, and professional services; Consumer goods and retail, Energy and materials, Financial
services; Health care, pharma, and medical products; Media and telecom, Technology. In Figure 1d, from top to bottom:
Multimodal Action Recognition, Multimodal Emotion Recognition, Question Answering, Cross-Modal Retrieval,
Object Localization, Event Localization, Speech Recognition, Video Captioning, Video Generation, Audio Generation.

Table 1: Encoders in recent audio-visual-language models.
Year Method Audio Visual Language

2024 Amuse [19] THTS [20] TSwin Transformer-V2 [21] TTransformer [22]
2024 TSPM [23] CVGGish [24] TCLIP [25] TCLIP [25]
2024 TeSO [26] CVGGish [24] TSwin Transformer [27] TImageBind [28]
2024 TFGCN [29] CWav2Vec [30] TCLIP [25] GloVe [31]
2024 OmniVec [32] TAST [33] TViT [10]+TViViT [34] TBERT [35]
2023 CORECT [36] FC FC TTransformer [22]
2023 VALOR [37] CVGGish [24] CResNet [38]+CR(2+1)D [39] TCLIP [25]+TCLAP [40]
2023 ImageBind [28] TAST [33] TCLIP [25] TCLIP [25]
FC = Fully Connected Layer; HTS = HTS-Audio Transformer; AST = Audio Spectrogram Transformer;

T: architecture based on Transformer; C: architecture based on CNN;
Certain models, such as ImageBind, are composed of multiple encoders. When referred to in the specific modality column, it means

using the corresponding modality encoder (e.g., TeSO uses ImageBind language stream as the language encoder).

• We present key challenges such as limited long-term interactive capabilities, high computational demands, and
lack of interpretability in deep models, and future research directions.

The rest of this paper is organized as follows. We review feature extraction in Section 2 and feature fusion in Section 3.
Section 4 presents diverse multimodal tasks. We discuss current trends in Section 5, summarize challenges and future
directions in Section 6, and conclude in Section 7.
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Figure 2: Common encoders used for feature extraction. Figure 2b and Figure 2c remove the final several fully
connected layers, as these layers are often used for classification.

2 Feature Extraction

Recent advances in audio-visual-language modeling hinge on deep learning’s ability to extract rich vector representations
from raw multimodal inputs. We survey recent literature and summarize audio, visual, and language encoders that
produce these vector representations in Table 1.

2.1 Language Representation

Language can be represented as a sequence of discrete tokens of length L, denoted as xL = [x1, x2, . . . , xL], where
each token corresponds to a word or subword. Unlike visual or audio signals, these tokens are symbolic and lack
intrinsic meaning. Their semantics arise from context, which enables models to learn vector representations, known as
embeddings, that capture their contextual meaning. In this paper, features, latent vectors, and embeddings are used
interchangeably.

GloVe GloVe is a classic method for learning word embeddings based on global word co-occurrence statistics [31].
It constructs a word-word co-occurrence matrix from a large corpus, where each entry captures how frequently two
words appear together within a given context window. GloVe then optimizes word vectors so that their dot product
approximates the logarithm of their co-occurrence count. The result is a static embedding for each word: its vector
representation is fixed regardless of context.

Transformer-Based Encoder The Transformer architecture was originally introduced to capture long-range depen-
dencies in machine translation through a global self-attention mechanism [22]. Building on this foundation, BERT
adapted the Transformer encoder by introducing a special [CLS] token to aggregate global sequence information for
classification tasks [35]. It also proposed a pivotal pretraining objective—masked language modeling—which we
discuss in detail in Section 5.3. Notably, both the original Transformer encoder and BERT are pretrained exclusively on
language modality. A commonly used structure is shown in Figure 2a.

Multimodal Encoder CLIP [25] and CLAP [40] adopt dual-encoder contrastive learning frameworks to align
language with vision and audio, respectively. CLIP uses a Vision Transformer (ViT) image encoder and a BERT-based
text encoder, while CLAP follows a similar paradigm for audio–text alignment. In both models, the language encoder
maps text inputs into a shared multimodal embedding space, aligned with image or audio features to enable effective
multimodal understanding. ImageBind [28] extends this approach by aligning additional modalities, using AST for
audio and directly adopting CLIP’s pretrained image and text encoders for visual and textual representations. Notably,
TeSO [26] uses the text encoder from ImageBind for language encoding (See Method TeSO in Table 1), though it is
structurally identical to CLIP’s text encoder.
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2.2 Vision Representation

Vision plays a crucial role in human perception [41]. Visual information is often represented computationally in the
form of RGB images or videos. An RGB image is denoted as xV ∈ RC×H×W , where C = 3 represents the number
of channels, H and W denote the image height and width of the image, respectively. Videos, as a common visual
modality, are represented as sequences of RGB images ordered in time. We categorize visual encoders into CNN-based
and Transformer-based, and multimodal encoder architectures. As a multimodal encoder, the CLIP visual encoder
is also commonly used for visual feature extraction, as seen in methods such as TSPM, TFGCN, and ImageBind in
Table 1. Since the CLIP model is revisited in the context of multimodal encoders for language feature extraction, we do
not repeat its details here.

CNN-Based Encoder Convolutional Neural Networks (CNNs) have long been the state-of-the-art in visual tasks.
Their core component, the convolutional layer, introduces an inductive bias that effectively captures local spatial
patterns. Since visual information is predominantly localized in images, CNNs are naturally well-suited for grid-
like data structures such as images. In contrast to Transformer-based models, CNNs typically reduce the feature
dimensionality progressively, making them strong candidates for lightweight model design. Numerous architectural
variations have been proposed to improve CNN performance across diverse application needs [42, 43]. ResNet
introduced the residual block, enabling the training of deeper CNNs capable of learning richer image representations.
It has since become the default backbone in CNN-based vision models [38]. For video tasks, R(1+2)D models are
a popular CNN-based choice [39]. To better exploit both temporal and spatial cues in video data, some approaches
combine features extracted from both ResNet and R(2+1)D networks (e.g., VALOR in Table 1). A commonly used
structure, Resnet50, is shown in Figure 2b.

Vision Transformer-Based Encoder Transformers have demonstrated exceptional performance in various natural
language processing tasks, motivating their application in computer vision. As noted earlier, Transformers are inherently
designed for sequential token processing. To adapt them for images without altering the architecture, ViT [10] partitions
images into patches and encodes each patch similarly to language token embeddings. Since images contain more
complex spatial information than text, extending ViTs beyond image classification requires finer-grained modeling.
Swin Transformer addresses this by enabling hierarchical feature extraction and local attention [27, 21]. The success of
ViT highlights the potential for unified vision-language models. Compared to CNNs, ViTs exhibit better scalability;
although they typically require larger training datasets, they can surpass CNNs under appropriate conditions. Analogous
to the R(2+1)D CNN architecture for video tasks, ViViT [34] adapts ViT for video inputs, offering enhanced model
capacity and improved performance on temporal visual tasks.

2.3 Audio Representation

The raw mono audio is commonly sampled as a waveform. For a better process, many methods transform it into a mel
spectrogram via the short-time Fourier transform. Specifically, a mel spectrogram is a matrix xA ∈ RT×F , where T
denotes the number of time frames and F denotes the number of frequency bins. We classify methods from the past five
years into CNN-based encoders and Transformer-based encoders.

CNN-based Encoder Beyond images, audio is also a continuous signal, making CNNs well-suited for audio
processing. Wav2Vec is a self-supervised model that learns audio representations directly from raw waveforms [30].
Similar to unsupervised pretrained models in natural language processing, Wav2Vec encodes features from context;
however, unlike discrete language tokens, audio is continuous, so convolutional layers are used to capture local features.
VGGish [24], inspired by the VGG architecture in computer vision, processes mel spectrograms, which can be treated
as 2D grayscale images with channel C = 1 (though not natural images). Thus, adapting image-based CNNs for mel
spectrograms is a natural choice for audio feature extraction. The structure of VGGish is shown in Figure 2c.

Audio Transformer-Based Encoder As Transformers have proven effective in language and vision, audio encoding
has been inspired by them. Motivated by ViT in computer vision, the mel spectrogram is split into patches and fed
into the AST Transformer model [33]. HTS [20], another approach based on Transformer, is inspired by the Swin
Transformer, employing a hierarchical structure to reduce model size and training time.

In summary, Transformer Encoders have been widely adopted across modalities due to their strong modeling capacity
and the potential to unify architectures for diverse input types. Despite this trend, convolutional neural networks remain
prevalent in audio and visual domains, particularly in scenarios where lightweight models are preferred. A key challenge
in audio-visual-language modeling lies in the fundamentally different raw data formats and characteristics. As described
in the previous three subsections, images are spatial pixel arrays, audio is temporal waveforms or mel spectrogram
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Figure 3: Fusion. Figure 3a and Figure 3b are 2 common fusion stages. Figure 3c to Figure 3e are 3 common fusion
operations. Concat represents concatenation. CA represents CrossAttention. xA, xV , and xL denote audio, visual, and
language input features, respectively. z denotes the fused feature.

matrices, and language consists of discrete symbolic sequences. Effective alignment of the data often leads to notable
performance gains. While two-modal alignment, such as the vision-language pairing exemplified by CLIP, has seen
significant progress [16], aligning three modalities (e.g., vision, audio, and language) remains relatively less explored.
In particular, audio and video data require not only semantic alignment but also precise temporal synchronization,
which introduces additional complexity. Currently, there is a lack of alignment methods that are both practical and
scalable for such settings. Nevertheless, developing such techniques is crucial and arguably even more pressing than for
traditional bimodal tasks.

3 Feature Fusion

Multimodal fusion is a promising technique for sophisticated tasks [44]. Many studies categorize fusion methods by
the stage at which modalities are integrated, typically classifying them as early (feature-level), late (decision-level), or
intermediate (hybrid/model-level) fusion [45, 46]. Early fusion combines features at the input stage, followed by joint
processing; late fusion aggregates decision scores from modality-specific branches. Intermediate fusion strikes a balance,
extracting unimodal features via separate encoders and merging latent representations for joint inference. However,
in contemporary audio-visual-language deep learning models, these boundaries blur, often resembling intermediate
fusion in practice. Hence, rather than adhering to theoretical distinctions, we adopt a categorization grounded in fusion
mechanisms from recent practical implementations in audio-visual-language modeling (grouped in Table 2), namely,
MLP fusion, Cross-attention fusion, Transformer fusion, and tensor fusion. Figure 3 illustrates some commonly used
fusion techniques. Note that the mechanisms discussed in this paper are not exhaustive but represent a useful review
of widely adopted methods in audio-visual-language modeling. For example, although graph-based methods share
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Table 2: Commonly used fusion operations
Operation Example Aligned Task Stage

MLP Fusion TTE [46] % DD Late Fusion
Transformer Fusion VATT [47] % AVU Early Fusion
Transformer Fusion WCMA [52] % MER Intermediate Fusion
Transformer Fusion BTV [50] % AVQA Intermediate Fusion

Cross-attention Fusion TFGCN [29] % MER Intermediate Fusion
Cross-attention Fusion MEERKAT [48] ! AVU Intermediate Fusion
Cross-attention Fusion MSFT [53] ! AVVC Intermediate Fusion

Tensor Fusion TF-BERT [54] % MER Intermediate Fusion
Tensor Fusion InTense [55] % MER Intermediate Fusion

DD = Depression Detection; AVU = Audiovisual Video Understanding (which contains multiple subtasks); MER = Multimodal
Emotion Recognition; AVQA = Audiovisual Question Answering; AVVC = Audiovisual Video Captioning;

The Aligned column indicates whether latent features from different modalities are mapped into a shared representation space such
that semantically corresponding elements are aligned before fusion.

some structural similarities with modern attention-based approaches, they are not included here because, in practice,
attention-based methods have largely supplanted them in audio-visual-language modeling [47, 48].

Simple Fusion Before introducing modern fusion mechanisms, we first review several fundamental techniques. Basic
fusion methods include additive fusion z = w1x1 +w2x2 and element-wise multiplicative fusion z = w⊙ (x1 ⊙x2).
These techniques can be applied independently or integrated with nonlinear neural networks to enhance representational
capacity. They are widely employed in feature fusion scenarios, for instance, using modality embeddings to indicate
the source modality of each segment, analogous to position encoding in sequence models [49, 50, 51]. While modern
audio-visual-language systems rarely rely solely on these methods for modality fusion, they serve as alternatives to
concatenation in more advanced fusion architectures in the rest of this section.

MLP Fusion A straightforward approach to feature fusion in neural networks is to concatenate modality-specific
features and feed them into a multilayer perceptron (MLP), typically consisting of one or two hidden layers. While this
method does not align with traditional late fusion, where final decision scores are combined, it is sometimes referred to
as late fusion when applied near the end of a network [46].

Transformer Fusion Transformer encoder models are frequently used for fusion. Similar to early fusion, where
raw features are combined and fed into a nonlinear processor such as a Transformer encoder, latent features can also
be fused by combining them and inputting them into a Transformer encoder model [52, 50]. The main advantage of
using Transformers at the fusion stage lies in their ability to capture long-range dependencies and complex cross-modal
interactions via self-attention, resulting in more accurate and robust multimodal representations.

Cross-Attention Fusion Cross-attention is a key component in Transformer decoders, enabling the fusion of
latent representations from the encoder with prior decoder outputs. In multimodal learning, a common strategy for
leveraging pretrained large language models is to integrate modality-specific features, such as visual and audio, via
cross-attention [48]. Similar to self-attention, cross-attention also employs the query-key-value (QKV) mechanism in
Equation 1, but differs in that it operates across distinct modalities. For instance, visual features can serve as queries
while language features act as keys and values.

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (1)

Typically, cross-attention fusion is followed by additional layers to further process the combined representations.
For instance, TFGCN [29] constructs a graph from the cross-attention fused features and subsequently applies graph
convolutional networks. Since standard cross-attention handles two modalities, recent work such as MSFT [53] proposes
multi-stage cross-attention to handle three (audio, visual, and language).

Some studies adopt paired cross-attention, where each modality attends to the other symmetrically: one modality
uses the other as key/value while acting as the query, and vice versa [53]. This results in two updated modality-
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specific representations that capture cross-modal interactions bidirectionally. While these operations may be viewed
as coordinated rather than fused in conventional multimodal learning since they retain the same number of outputs
as inputs [44], they still facilitate interaction across modalities, and from the level of the entire neural network, the
modality-specific information is gradually integrated into the decision space. Thus, we argue that complete separation of
these operations is unnecessary. In this work, we focus on the fusion of modality information, where both coordinated
and conventional fused outputs capture meaningful multimodal interactions.

Tensor Fusion Tensor fusion was first introduced to fuse audio, visual, and language modalities for sentiment
analysis [56]. It provides a general and expressive approach to model both unimodal and multimodal interactions
through an outer product operation.

Let the modality-specific feature vectors be x̃A = [xA; 1], x̃V = [xV ; 1], x̃L = [xL; 1], where xA, xV , and xL

represent the feature vectors for audio, visual, and language modalities respectively, and appending 1 enables bias terms
and interactions with the other modalities. The tensor fusion is computed as in Equation 2.

z = x̃A ⊗ x̃V ⊗ x̃L (2)

Where ⊗ denotes the outer product. The resulting tensor z captures:

• Unimodal features (e.g., xA, xV , xL)

• Bimodal interactions (e.g., xA ⊗ xV , xV ⊗ xL, xA ⊗ xL)

• Trimodal interactions (e.g., xA ⊗ xV ⊗ xL)

While tensor fusion can be computationally expensive due to the high-dimensional output, it has been commonly used
as a baseline or as a submodule within larger architectures for multimodal sentiment analysis [54]. Much recent work
has been devoted to improving its efficiency and interpretability for audio-visual-language tasks [55].

In summary, intermediate fusion has become the mainstream approach in audio-visual-language modeling, where a wide
variety of fusion operations are commonly employed to effectively integrate information across modalities. Among
fusion mechanisms, cross-attention and Transformer encoder-based architectures are currently more widely adopted
than alternative approaches. The choice mainly depends on computational efficiency and practical convenience. Cross-
attention modules tend to be more lightweight and easier to integrate into pretrained Transformer models compared to
concatenation followed by Transformer encoding. In contrast, MLPs remain viable for simple fusion tasks. Tensor
fusion explicitly captures intra- and inter-modal interactions through high-order representations, but their high memory
overhead restricts practical usage. Improved variants of tensor fusion show promising potential for broader adoption in
future work.

4 Understanding and Generation Tasks

Having reviewed the core components of audio-visual-language models in Section 2 and Section 3, we now turn to
their downstream applications. Figure 1d provides an overview of the capabilities of these models by illustrating the
proportion of publications per task over the past five years. This section surveys these tasks in detail and organizes them
into two broad categories: understanding tasks and generation tasks. While this taxonomy is not exhaustive, it provides
a meaningful framework that covers the majority of existing work, representing relatively mature tasks with established
benchmarks for evaluation and comparison.

4.1 Understanding Tasks

Scene understanding is a fundamental general goal of multimodal learning [2]. This part of the survey focuses on audio-
visual-language understanding tasks, which we define as tasks requiring models to produce structured outputs based on
audio, visual, and language inputs, such as classifications, localizations, retrievals, or other predictions. Specifically,
we review key audio-visual-language understanding tasks, including multimodal action recognition [47], multimodal
emotion recognition [36], audiovisual question answering [19], audiovisual object localization [68], audiovisual event
localization [37], and cross-modal retrieval [74]. For each task, we survey representative datasets, model architectures,
and recent research advances. Table 3 summarizes benchmark comparisons and highlights state-of-the-art (SOTA)
methods across different audio-visual-language understanding tasks.
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Table 3: Benchmark datasets for multimodal learning understanding tasks.
Task Dataset Size Audio Visual Text SOTA Metric

MAR Kinetics-400 [57] 306K videos ! /! ! /! % /! VATT [47] Acc=82.1
EPIC-KITCHENS [58] 39K action segment ! /! ! /! ! /! MTCN [59] Acc=45.5

MER
IEMOCAP [60] 10K turns ! /! ! /! ! /! CORECT [36] Acc=84.7

CMU-MOSEI [61] 23K datapoints ! /! ! /! ! /! RMA [62] F1=88.1
MELD [63] 1K dialogues ! /! ! /! ! /! TelME [64] F1=67.4

AVQA Music-AVQA [65] 9K videos ! /! ! /! ! /! Amuse [19] Acc=82.4
AVQA [66] 57K videos ! /! ! /! ! /! TSPM [23] Acc=90.8

AVOL RefCOCO [67] 19k images % /! ! /! ! /! GroundingGPT [68] Acc=91.6
Flickr-SoundNet [69] 3K image-sound pairs % /! ! /! ! /! MEERKAT [48] AUC=67.9

AVEL AVE [70] 4K videos ! /! ! /! % /! OV-AVELBaseline [71] Acc=61.9
LLP [72] 11K videos ! /! ! /! % /! VALOR++ [37] F1=59.0

CMR MSR-VTT [73] 10K videos ! /! ! /! ! /! GRAM [74] R@1=64.8
AudioCaps [75] 46K audio caption ! /! ! /! ! /! CoAVT [76] R@1=44.9

MAR = Multimodal Action Recognition; MER = Multimodal Emotion Recognition; AVQA = Audiovisual Question Answering;
AVOL = Audiovisual Object Localization; AVEL = Audiovisual Event Localization; CMR = Cross-Modal Retrieval. The marks

under audio, visual, and text represent whether that modality is presented in the dataset (left) or method (right).

4.1.1 Multimodal Action Recognition

The surge of user-generated videos, driven by online platforms and low upload barriers, has led to massive, diverse
audiovisual data. This growth poses challenges in retrieval, recommendation, and regulation, highlighting the need for
automated video understanding. A core task in this domain is understanding human actions in audiovisual videos [59],
which has propelled the advancement of Multimodal Action Recognition (MAR).

Datasets To facilitate research, several benchmark datasets have been developed, providing standardized evaluation
platforms:

• Kinetics400, introduced by Kay in 2017, includes 400 human action classes, with each class containing at least
400 video segments of approximately 10 seconds in length [57]. Due to the dataset’s large size, many studies
use its subsets. For example, the SEAR [77] utilized the Kinetics-Sounds subset, and AVTeST [78] worked
with the MiniKinetics subset. Kinetics400 is typically evaluated using Top-1 and Top-5 accuracy metrics.

• EPIC-KITCHENS, a popular MAR dataset, is based on daily activities performed by individuals in home
kitchens, captured from a first-person perspective [58]. It uses an innovative "pause and speak" annotation
interface. The dataset contains 100 hours of video with 90K action segments.

Models VATT [47] proposes a unified Transformer architecture capable of processing audio, visual, and textual
modalities. Trained via contrastive learning, it demonstrates versatility across multiple downstream tasks, including
multimodal action recognition (MAR) on the Kinetics-400 dataset. In contrast, MTCN [59] adopts a dual-encoder
framework, separately modeling audiovisual and textual inputs. The audiovisual encoder generates candidate action
sequences, from which the language model selects the most probable outcome. These approaches exemplify two
distinct paradigms in multimodal modeling: unified versus modular architectures and end-to-end versus staged training
strategies. The results of these two methods are presented in Table 3. Although VATT is trained using three modalities,
it does not utilize textual labels as MTCN does during inference on the Kinetics-400 dataset. Instead, it follows the
standard MAR protocol for Kinetics-400, which involves using only audiovisual inputs to predict action labels.

Advances Recent developments in MAR extend beyond conventional settings. ActorShift [79] introduces domain
adaptation techniques that incorporate non-human (e.g., animal) actions using audio cues, thus broadening MAR’s
applicability. Charades-Ego [80] presents a cross-view benchmark combining first- and third-person perspectives,
encouraging the development of viewpoint-agnostic models. Additionally, the field is witnessing a shift toward
fine-grained annotation and improved multimodal alignment. Fine-grained refers to detailed, precise, and localized
characteristics or annotations.
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4.1.2 Multimodal Emotion Recognition

Multimodal emotion recognition aims to predict an individual’s emotional state by integrating signals from multiple
modalities, such as speech, facial expressions, body language, and physiological cues. Tasks like sentiment analysis [45]
and facial expression recognition [81] also fall under this category. Applications span various domains, including
assistive technologies for individuals with affective disorders, emotionally intelligent human-computer interaction,
personalized learning experiences, medical diagnostics, and immersive entertainment.

Datasets Several benchmark datasets have been established to facilitate the evaluation and comparison of multimodal
emotion recognition methods:

• IEMOCAP [60]. Comprising 302 video segments from dyadic conversations between five speaker pairs, this
dataset includes annotations for nine emotions, along with valence, arousal, and dominance ratings.

• MELD [63]. An extension of the EmotionLines dataset, MELD features audio, visual, and textual modalities
derived from Friends TV show dialogues. It includes over 1,400 dialogues and 13,000 utterances, each labeled
with one of seven basic emotions and a sentiment polarity.

• CMU-MOSEI [61]. Currently, the largest multimodal emotion recognition dataset, CMU-MOSEI, focuses on
sentence-level annotations in online videos. It spans over 12 hours of labeled content from more than 1,000
speakers and 250 topics.

Models Emotion modeling is typically categorized into two paradigms: discrete and dimensional. Discrete models
treat emotions as categorical labels (e.g., happiness, sadness, anger, fear), framing the task as classification [36, 64].
Dimensional models represent emotions as continuous values along axes such as valence (positivity) and arousal
(intensity), aligning with regression objectives [62]. Due to their interpretability and ease of evaluation, discrete models
dominate standard benchmarks.

Advances Recent efforts have addressed persistent challenges in modality fusion and dynamic modeling within
multimodal emotion recognition. To mitigate the impact of data corruption, such as facial occlusion or audio noise, and
temporal misalignment, new approaches aim to model cross-modal consistency under asynchronous conditions [82].
For instance, techniques have been developed to resolve conflicts when visual, audio, and textual cues express divergent
emotions, improving robustness to signal discrepancies.

Another line of research focuses on addressing modality dominance. Models often exhibit biased reliance on modalities
that show stronger statistical correlation with the target labels during training, which can lead to misclassification [83].
Recent approaches introduce adaptive weighting mechanisms or attention-based fusion to dynamically balance modality
contributions, improving generalization across diverse scenarios.

Furthermore, recognizing the dynamic nature of emotions, recent models increasingly incorporate temporal context,
such as conversational history or preceding utterances [83]. This shift toward temporal-aware architectures enables
more accurate modeling of evolving affective states, which is critical for real-world applications involving continuous
interaction.

4.1.3 Audiovisual Question Answering

Question Answering (QA) serves as a fundamental task for evaluating a model’s ability to comprehend and reason over
contextual information [84]. Traditional textual QA involves a question paired with a textual context [85], whereas
Audiovisual Question Answering (AVQA) leverages acoustic and visual information from videos as context [65, 66].

Datasets Two commonly used benchmark datasets for AVQA are:

• Music-AVQA [65]: This dataset comprises over 45K QA pairs grounded in musical audio, visual content, and
their interplay within videos. It includes five question types: existential, location, counting, comparative, and
temporal. The dataset contains 9.3K videos, each averaging 60 seconds in length.

• VAQA [66]: Composed of 57,015 videos depicting daily activities and 57,335 QA pairs, this dataset spans
diverse categories such as animals, vehicles, and sports. It introduces two additional question types, causal and
purpose, compared to Music-AVQA, but does not include comparative questions.

While both datasets incorporate audio, they differ in focus: VAQA centers on everyday scenarios, whereas Music-AVQA
targets musically rich content with higher information density. However, questions in both datasets often require only
coarse-grained understanding, limiting their applicability in complex scenarios and broader multimodal evaluations.
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Models To address the complexity of dense audio signals, Amuse [19] integrates music, visual, and language
modalities. It leverages annotated rhythmic and musical sources from Music-AVQA and aligns modalities along the
temporal axis to capture music-specific characteristics. Another approach, TSPM [23] emphasizes temporal-spatial
information perception. Acknowledging that only a portion of audiovisual components may be pertinent to a given
question, TSPM introduces dedicated temporal and spatial perception modules, which are subsequently fused through
cross-modal interactions. Together, these models exemplify different strategies for enhancing AVQA performance by
leveraging temporal alignment and selective attention across modalities.

Advances Recent progress in AVQA has shifted toward generative approaches powered by large pretrained language
models [86]. In contrast to classification-based models, which are limited by fixed answer vocabularies [35, 65],
generative models are capable of producing fluent, free-form responses, thereby aligning more closely with real-world
usage scenarios. For example, the Music-AVQA dataset defines 42 fixed answer classes, framing the task as a closed-set
classification problem [65]. While effective within the dataset’s scope, this setup hinders generalization to open-ended
or unseen answers in practical applications. Generative models, by design, can support multi-turn dialogues [87],
enabling more dynamic reasoning and making them better suited for interactive human-computer communication [48].

Despite these advantages, evaluating generative QA remains a significant challenge. Traditional metrics such as accuracy
are insufficient to capture the semantic quality or contextual relevance of open-ended responses. A common workaround
involves model-based evaluation, where GPT-style models are used to compute the conditional likelihood of candidate
answers given the question and context, with the highest-probability response selected as the most appropriate [88].

4.1.4 Audiovisual Object Localization

Understanding the spatial properties of objects, including their absolute positions and relative arrangements, is
widely regarded as a fundamental aspect of intelligent behavior. Traditional computer vision tasks such as object
detection [89], segmentation [90], and tracking [91] have achieved significant progress in modeling such spatial
information. Audiovisual object localization extends this capability by incorporating sound as an informative cue, which
is particularly beneficial in real-world scenarios where identifying the location of sound sources can guide attention and
enable more efficient data processing [92]. Furthermore, language can serve as a powerful interface, allowing users to
specify targets or attributes that should be grounded in the visual data [67].

Datasets Two related datasets are collected to localize objects in visual data.

• RefCOCO [67]: The term RefCOCO commonly refers to a suite of three related visual grounding benchmark
datasets: RefCOCO, RefCOCO+, and RefCOCOg. RefCOCO and RefCOCO+ were collected through a
two-player referential game [93]. RefCOCO contains 142,209 referring expressions across 19,994 images,
while RefCOCO+ includes 141,564 expressions paired with 19,992 images. In contrast, RefCOCOg was
constructed in a non-interactive setting and comprises 85,474 referring expressions over 26,711 images.

• Flickr-SoundNet [69]: This dataset is designed to evaluate a model’s ability to learn the correspondence
between visual scenes and associated sounds. Each sample is annotated with the image coordinates of the
sound source and its category, either object-based or ambient. The dataset includes 2,786 aligned image–sound
pairs, with 250 randomly selected for testing and the remainder used for training.

Models GroundingGPT [68] is an end-to-end model designed to perform object localization with audio, visual, and
language signals. GroundingGPT adopts a three-stage training strategy, gradually enhancing the model’s local semantic
awareness. Based on large language models, GroundingGPT leverages the remarkable language understanding and
extends to multimodal tasks. MEERKAT [48] is another audiovisual large language model equipped with a fine-grained
understanding of image and audio information. It adopts a modality alignment module and a cross-attention module to
enforce audiovisual consistency, thereby achieving remarkable results in multiple multimodal tasks.

Advances Recent advances leverage the semantic understanding capabilities of pretrained language models and
extend them to encompass spatial reasoning. While visual input remains central to spatial tasks, relying solely on visual
cues limits model flexibility in complex scenarios. For instance, in pedestrian or traffic object detection, users may wish
to query based on natural language descriptions [91] (e.g., "pedestrians wearing red jackets near a bus"). Traditional
approaches depend heavily on large-scale annotated datasets and extensive fine-tuning, which can be inefficient and
brittle, especially when queried attributes are underrepresented in training data.

To address these limitations, Um et al. [94] propose two loss functions for sound source localization. The object-aware
contrastive alignment loss leverages detailed object information from audiovisual scene understanding, while the object
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region isolation loss enhances performance in multi-source scenarios, improving localization and identification accuracy
in dense environments.

LLaVA-ST [95] introduces Language-Aligned Positional Embedding, which integrates coordinate-based textual tokens
into the visual space, facilitating alignment of fine-grained spatial-temporal correspondences. Additionally, the Spatial-
Temporal Packer decouples temporal and spatial resolution compression into two separate point-to-region attention
pathways, improving modeling efficiency and accuracy.

Tasks in audiovisual object localization are becoming increasingly fine-grained. Sounding Object Localization integrates
auditory cues to infer the spatial positions of sound-emitting objects in static images [96], promoting tighter integration
between auditory and visual modalities. In audiovisual segmentation tasks, the granularity increases further. Models
must perform pixel-level segmentation of sound-producing objects [97], moving beyond bounding boxes to generate
detailed spatial masks.

4.1.5 Audiovisual Event Localization

In dynamic real-world environments, understanding an action requires not only isolated visual frames, but also modeling
of temporal dynamics over longer sequences [37]. To this end, event localization has emerged as a critical task for
detecting and interpreting time-bound occurrences within videos [70, 72]. Audiovisual Event Localization (AVEL) has
gained increasing attention [70]. The task aims to temporally pinpoint events in a video using synchronized visual and
auditory cues.

Datasets Two representative benchmark datasets for audiovisual event localization are:

• AVE [70]: Collected from AudioSet [98], AVE dataset contains 4143 videos. Each video contains at least a
2-second-long audiovisual event within 28 categories.

• LLP [72]: This dataset contains 11,849 YouTube video clips of 25 event categories. It is also a subset of
AudioSet [98]. The LLP dataset provides not only category labels but also fine-grained boundary information
with start time and end time of the events.

Models To achieve open-vocabulary AVEL, OV-AVELBaseline [71] adopts a zero-shot paradigm similar to CLIP [25].
Specifically, it applies ImageBind [28] to extract audio, visual, and language features. By computing the cosine
similarity between audio embeddings and language embeddings, as well as between visual embeddings and language
embeddings, the method finds the audio event category and video event category of each video segment. To predict
audiovisual labels, OV-AVELBaseline selects the categories when the audio event category and the video event category
agree. VALOR++ [37] investigates the under-explored unaligned setting, where the goal is to recognize audio and
visual events in a video with only weak labels observed. These weak labels annotate the events that happen but are
not specifically attached to one modality. Similarly, VALOR++ adopts CLIP and CLAP for visual-language similarity
computation and audio-language similarity computation, respectively.

Advances As with AVOL in Section 4.1.4, the leading approach for AVEL uses Multimodal Large Language
Models (MLLM). By leveraging both audio and visual modalities, AVEL systems mitigate the limitations of unimodal
approaches in capturing temporal context and environmental semantics. For instance, segmenting lengthy lecture videos
into concise, meaningful excerpts allows for more efficient navigation and targeted content retrieval [99]. However, to
the best of our knowledge, there is no existing dataset that provides fine-grained annotations across audio, visual, and
language modalities. While some datasets incorporate multiple modalities, they are typically not designed with detailed
temporally or semantically aligned correspondences between them [70, 72]. We argue that such fine-grained alignment
is essential for developing models capable of precise cross-modal understanding and reasoning, which is critical for
tasks such as audiovisual event localization, multimodal grounding, and content-based retrieval. Therefore, we believe
that there is a strong need for a novel dataset specifically designed to support fine-grained multimodal alignment.

4.1.6 Cross-Modal Retrieval

Cross-modal retrieval retrieves relevant content from one modality based on a query from another, and typically operates
on coarse-grained semantic matching without requiring fine-grained alignment, for example, recognising elements
within an image. Such retrieval methods can be applied in practical systems like search engines and recommendation
systems [100, 101], where multimodal queries and results are common.

Datasets To facilitate research in various task settings, many benchmark datasets have been proposed. Two key
datasets are:

12



Recent Advances in Audio-Visual-Language Modeling

• MSR-VTT [73] is a large-scale video-to-text benchmark. The dataset was built by collecting 257 popular
video search queries from a commercial video search engine and retrieving 118 videos per query. The release
contains 10K web video clips (41.2 hours) and 200K clip-sentence pairs; each clip was annotated with about
20 human-written natural-language captions.

• AudioCaps [75]. This dataset provides 46K audio clips collected from AudioSet [98]. The audio clips are
paired with video signals. The audio and video are separately labelled with human-written text.

Models In multimodal retrieval, contrastive learning is widely used to project inputs into a joint embedding space by
maximizing similarity between positive pairs and minimizing it for negative pairs [102, 103]. CLIP [25] significantly
advanced this paradigm by training on 400M image-text pairs with a dual-encoder architecture and using cosine
similarity between normalized embeddings. Its efficiency and scalability have led to broad adoption in audio-visual-text
retrieval tasks. However, the shared embedding may suppress modality-specific features critical for some tasks. For
example, in image-text retrieval, subtle visual details like brushstroke texture or lighting direction might be downplayed
because such features lack direct textual counterparts, yet are important for tasks like art style recognition. To address
this, Zeng et al. [104] propose dual common subspaces: an explicit subspace that captures modality-common features
by aligning paired audio-visual data while discarding modality-specific details, and an implicit subspace that preserves
modality-specific features to maintain category distinctions by increasing feature separability within each modality.
This design retains complementary information unique to each modality, enabling richer and more discriminative
multi-modal representations. Handling incomplete modalities is another challenge. Additionally, Lee et al. propose
a mismatch-aware strategy that aligns and adjusts representations to learn robust audiovisual embeddings even with
missing audio [105].

GRAM [74] addresses limitations of previous approaches that align each modality to a fixed anchor by directly aligning
multiple modalities in a higher-dimensional space. It minimizes the volume of the parallelotope, an extension of
a parallelogram in higher dimensions, spanned by the modality vectors, thereby ensuring simultaneous geometric
alignment of all modalities. CoAVT [76] extracts audio and visual features using separate encoders, followed by a
joint encoder to derive audio, visual, and audiovisual representations. These are fused via cross-attention layers using
learnable queries. Language is processed independently in a separate stream, reflecting the distinction between verbal
(language) and non-verbal (audiovisual) information. The audiovisual and language streams are optimized with a
matching loss and a language modeling loss, respectively, while both are jointly trained with a contrastive loss to align
audiovisual and linguistic information.

Advances Recent developments in cross-modal retrieval have achieved significant progress in zero-shot inference
capabilities, enabling models to generalize effectively to unseen data without requiring additional examples during
inference. Parida et al. [102] successfully demonstrate audiovisual video retrieval through coordinated joint multimodal
embeddings in a zero-shot manner, establishing a robust framework for cross-modal understanding. Advanced
correlation analysis techniques have been effectively integrated into retrieval systems, with clustering and canonical
correlation analysis approaches proving successful in identifying corresponding data across modalities, as shown by
Zeng et al. [103, 106] and Zhang et al. [107].

The field has progressed beyond simple architectures to sophisticated models that effectively handle complex multimodal
scenarios. For multiscale data representation, Chen et al. [108] have successfully developed specialized models tailored
for multiscale audiovisual retrieval tasks, demonstrating superior performance compared to standard approaches.
Furthermore, advanced architectures have been successfully deployed to manage retrieval complexity, with VAE and
Encoder-Decoder frameworks [76] showing promising results in handling sophisticated multimodal retrieval tasks,
representing significant advances in architectural innovation for the field.

4.2 Generation Tasks

Generation tasks involve creating new content from existing data, including image, video, text, audio, and multimodal
generation. Compared to understanding tasks, which focus on reasoning over raw data to derive conclusions, generation
tasks are generally more complex and challenging to evaluate, especially in creative domains where subjectivity plays a
significant role [109]. Despite their differences, understanding and generative tasks are closely linked: understanding
methods often assist in data processing, model evaluation, or serve as key components in generative systems. For
instance, the CLIP model, originally designed for retrieval, is used as the text encoder in TAgVM to enhance the model’s
ability to interpret textual prompts and control video generation accordingly [110]. Common tasks incorporated with
audio, visual, and language modalities are listed in Table 4.
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Table 4: Benchmark datasets for multimodal learning generation tasks.
Task Dataset Size Audio Visual Text SOTA In→Out Metric

AVSR LRS2 [111] 144K videos ! ! ! AUTO-AVSR [113] AV→T WER=1.5
LRS3 [112] 151K videos ! ! ! AUTO-AVSR AV→T WER=0.9

AVVC MSR-VTT [73] 10K videos ! ! ! CLIP4VLA [120] AV→T METEOR=31.1
ActivityNet Captions [121] 20k videos ! ! ! BMHRL [122] AV→T METEOR=10.92

ViG AudioSet-Cap [109] 809K videos ! ! ! SVG [109] T→AV FID-vid=8.10
Landscape [123] 9K videos ! ! % TAgVM [110] AT→V FVD=877.21

AVSR = Audiovisual Speech Recognition; AVVC = Audiovisual Video Captioning; ViG = Video Generation.

4.2.1 Audiovisual Speech Recognition

Automatic Speech Recognition (ASR) transcribes spoken language from audio signals, while Visual Speech Recognition
(VSR), or lip reading, extracts speech content from visual cues. Both tasks have been widely studied due to their broad
range of applications. In real-world scenarios, audio signals can be corrupted by multi-source noise, and visual inputs
may suffer from occlusions. These challenges naturally motivate the integration of both modalities. By leveraging the
complementary strengths of audio and visual information, Audiovisual Speech Recognition (AVSR) aims to improve
recognition accuracy and enhance robustness under noisy conditions.

Datasets The primary datasets for audiovisual speech recognition (AVSR) are LRS2 [111] and LRS3 [112], specifi-
cally designed for visual speech recognition (VSR) and AVSR tasks.

• LRS2: Previous lip-reading research was confined to word- or phrase-level recognition. LRS2 extends this by
enabling sentence-level acoustic-video recognition for natural language transcription. It includes 4960 hours
of BBC videos and over 100K natural sentences.

• LRS3: This dataset comprises over 400 hours of TED talks, with corresponding subtitles and word alignment
boundaries, allowing for more precise alignment.

These datasets primarily consist of news and lecture content, lacking features typical of spontaneous, fast, and indistinct
spoken language found in everyday conversations. They also lack interactive dialogue scenarios. The vocabulary
in news broadcasts is more limited compared to everyday language. Furthermore, the lecture format is inherently
one-directional, failing to capture elements such as interruptions or conversational flow.

Evaluation Metrics Both datasets are evaluated using Word Error Rate (WER). However, WER does not account for
semantic equivalence or linguistic variations, as it is based on literal word matching. For example, "we’ll go" and "we
will go" would be considered mismatches by WER, despite being semantically identical.

Models Most current Audiovisual Speech Recognition (AVSR) methods adopt an autoregressive architecture, pro-
gressively generating text through the Transformer Decoder while leveraging cross-attention to integrate multimodal
information from both audio and visual inputs. Representative methods following this design paradigm include AUTO-
AVSR [113], AV-RelScore [114], MBH [115], VATLM [116], and AKVSR [117]. Among these, VATLM distinguishes
itself by integrating the text modality during training, enabling joint audio-visual-text multimodal modeling that
enhances language modeling capacity and cross-modal synergy of the generation module. AKVSR takes a different
approach by employing a Transformer-based visual encoder and pre-storing audio features, representing one of the few
methods that depart from the conventional ResNet/Conv3D paradigm in visual processing.

Some approaches explore non-Transformer-based generation structures for specific application requirements. AV-
Former [118] replaces the traditional Transformer Decoder with a Conformer RNN-T architecture, specifically designed
for real-time streaming recognition scenarios. The system extracts visual features using CLIP + Linear processing,
while audio features are derived from a Conformer encoder. Most AVSR models adopt a joint optimization strategy that
combines Connectionist Temporal Classification (CTC) loss and attention-based loss to leverage both global alignment
and autoregressive sequence modeling capabilities [119].

rather than in isolated modality pairs.

Advances The field of AVSR has progressed significantly through architectural innovations that address specific
challenges in multimodal speech processing. The integration of text modality during training, as demonstrated by
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VATLM [116], represents a major advancement in enabling true trimodal learning that enhances cross-modal synergy
beyond traditional audio-visual approaches. This development showcases the evolution from bimodal to comprehensive
multimodal architectures in speech recognition systems.

Architectural diversification has emerged as another key advance, with methods like AKVSR [117] moving beyond
conventional visual processing paradigms by adopting Transformer-based visual encoders. The development of
streaming-oriented architectures, exemplified by AVFormer’s Conformer RNN-T design [118], demonstrates the field’s
progression toward practical real-time applications. Furthermore, the widespread adoption of hybrid training strategies
combining CTC and attention-based losses has become a standard practice, reflecting the maturation of optimization
techniques that effectively balance global alignment with sequential modeling requirements.

4.2.2 Audiovisual Video Captioning

Audiovisual video captioning seeks to generate fluent, natural language descriptions of video content by leveraging
both visual and audio modalities. Given that different individuals may describe the same video in various ways, the task
is inherently challenging, particularly when it comes to objectively evaluating the generated captions.

Datasets Currently, the most widely used benchmarks for audiovisual video captioning are MSR-VTT [73] and
Captions [121].

• MSR-VTT [73]: As previously mentioned in the context of visual retrieval, MSR-VTT was originally designed
for video captioning, though its annotations have also been repurposed for retrieval tasks. However, not all
videos in MSR-VTT contain audio. To adapt it for audiovisual captioning, silent videos must be filtered out.
After filtering, 7,867 and 884 videos remain for training and testing in retrieval tasks, respectively, and 5,867,
448, and 2,617 videos are used for training, validation, and testing in captioning tasks [120].

• ActivityNet Captions [121]: This dataset is based on ActivityNet v1.3, comprising approximately 20,000
untrimmed YouTube videos annotated with around 100,000 captions.

Compared to ActivityNet captions, which average 13.40 words, MSR-VTT captions are shorter, averaging 9.28
words [124]. Moreover, segments in both datasets are defined based on visual cues without explicit audio alignment.
Some videos even lack audio entirely, posing challenges for research that requires synchronized audiovisual inputs.

Evaluation Metrics BLEU-4 [125], METEOR [126], ROUGE [127], and CIDEr [128] are four commonly used
metrics for evaluating video captioning models. While all are n-gram-based, each emphasizes different aspects of the
generated text. BLEU-4 focuses on precise n-gram overlap, specifically 4-grams; METEOR accounts for stemming,
synonym matching, and positional penalties; ROUGE prioritizes recall and is widely used in summarization tasks;
CIDEr incorporates TF-IDF weighting with n-gram similarity to better align with human judgment. Despite their
differences, these metrics primarily assess surface-level lexical similarity and do not capture the underlying semantic
meaning of the generated captions.

Models CLIP4VLA extends the successful CLIP contrastive learning framework to incorporate audio modality for
multimodal understanding [120]. The model adopts a similar architecture for audio processing as used for visual inputs,
exploring alignment across multiple modality pairs, including audio-text, audiovisual, and original versus augmented
audio. Evaluation on video captioning tasks using the MSR-VTT dataset demonstrates the effectiveness of contrastive
learning for modality alignment, with the integration of a Transformer-based Multimodal Caption Generator for text
output. However, the approach focuses primarily on pairwise alignment strategies, with trimodal consistency remaining
a complex challenge for future optimization.

BMHRL employs reinforcement learning within a bimodal hierarchical Transformer framework that integrates visual
and audio modalities for video captioning [122]. The architecture extracts visual features using an I3D network [129]
and audio features via VGGish [24], with GloVe embeddings for textual encoding [31]. Cross-modal fusion is performed
in two stages: initial integration of audio and visual features, followed by fusion with textual representations. The
reinforcement learning implementation utilizes an actor-critic architecture where textual features contribute to the
critic for reward estimation. Ablation studies demonstrate that incorporating audio significantly enhances captioning
performance compared to traditional vision-only approaches, though at the cost of increased computational complexity.

Advances The integration of audio modality into traditionally vision-language frameworks represents a significant
advancement in multimodal understanding. CLIP4VLA successfully demonstrates that contrastive learning principles
can be effectively extended beyond vision-language pairs to encompass audio-visual-language alignment [120]. This
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work establishes a foundation for trimodal contrastive learning, though challenges remain in achieving consistent
alignment across all three modalities simultaneously.

Reinforcement learning approaches have proven effective for capturing long-range dependencies in multimodal content
generation. The BMHRL framework demonstrates substantial improvements in video captioning performance through
the incorporation of audio features, with ablation studies providing empirical evidence that multimodal integration
significantly outperforms vision-only baselines [122]. This advancement highlights the importance of audio modality in
comprehensive video understanding tasks, representing a shift from traditional vision-centric approaches toward truly
multimodal architectures.

4.2.3 Video Generation

Sounding video generation and audio-language guided video generation are both multimodal tasks that require modeling
interactions across different modalities. Sounding video generation aims to synthesize videos with synchronized audio,
necessitating joint generation of both visual and auditory streams [109]. In contrast, audio-language guided video
generation conditions the video synthesis process on both audio and textual inputs, requiring effective cross-modal
understanding [110].

Datasets Below are some datasets designed for video generation that involve audio, visual, and language modalities.

• AudioSet-Cap [109] is collected based on AudioSet [98]. The dataset contains rich audio diversity videos and
was annotated manually with text descriptions. There are 809,438 and 1,000 video clips of about 10 seconds
in the training set and test set, respectively.

• Landscape [123] aims to extend existing low-resolution video datasets with high-resolution videos. 928 at
least 1280 × 720 video are collected. They are divided into 10-second non-overlapped clips. These clips cover
9 different scenes. The scene labels are provided, but a natural language description is not constructed.

Evaluation Metrics Fréchet Inception Distance (FID) and Fréchet Video Distance (FVD) are perceptual metrics
designed to quantify the quality and realism of generative models by comparing the statistical distributions of real and
generated samples in a deep feature space. FID evaluates image generation by embedding samples into the feature
space of a pretrained Inception network, capturing high-level semantic content rather than low-level pixel similarity.
It measures the divergence between real and generated image distributions based on their mean and covariance, thus
reflecting both fidelity and diversity. FVD generalizes this approach to video by utilizing the I3D network, which
encodes both spatial and temporal features. Unlike metrics that assess frames independently, FVD captures temporal
coherence and motion consistency across frames, making it suitable for evaluating the dynamic structure of generated
videos. Both metrics assume that deep features of natural data follow approximately Gaussian distributions, and their
comparison reflects perceptual alignment in a statistically grounded way.

Models Generative models for multimodal synthesis have evolved from foundational approaches including
GANs [130], VAEs [131], and diffusion models [132]. Building upon these foundations, SVG-VQGAN represents a
unified approach for learning both inter-modal and intra-modal representations in sounding video generation [109].
The model employs a Transformer-based autoregressive architecture to ensure semantic alignment between input text
descriptions, visual frames, and audio signals while preserving temporal coherence across modalities. Similar to earlier
works like MM-Diffusion that utilized dual-branch architectures for separate modality processing [133], SVG-VQGAN
implements a multi-stage training pipeline. However, it advances beyond previous approaches by incorporating both
contrastive losses for representation alignment and adversarial losses to enhance generation quality, demonstrating how
adversarial learning principles continue to be effective in modern generative frameworks.

TAgVM introduces a comprehensive framework for text-audio guided video generation through a multi-stage archi-
tecture that synthesizes multiple generative paradigms [110]. The method first employs a 3D VQ-GAN to compress
high-dimensional video data into a low-dimensional discrete latent sequence, followed by an autoregressive transformer
that generates latent tokens conditioned on textual input. This approach builds upon the semantic alignment strategies
explored in MM-LDM, which addressed unconditional sounding video generation through dual encoder-decoder
networks with shared latent semantic spaces [134]. To enhance semantic richness and ensure alignment with both text
and audio modalities, TAgVM applies a diffusion model guided by text and audio features to refine the generated video
scenes. This hybrid methodology demonstrates the effectiveness of combining vector quantization, autoregressive mod-
eling, and diffusion processes for multimodal video synthesis, representing an evolution from earlier single-paradigm
approaches toward integrated multi-technique frameworks.
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Advances Current trends indicate that both diffusion models and GANs are actively employed in video generation
tasks. To handle complex input-output mappings, most methods operate within a low-dimensional latent space. Multi-
stage training pipelines and the use of multiple loss functions, such as reconstruction, contrastive, and adversarial
losses, have become standard practices to enforce consistency across modalities. However, the optimal combination and
balancing of these losses remain an open research question. Moreover, existing approaches are primarily limited to
short video clips, and achieving temporal coherence in long-duration video generation continues to be a significant
challenge.

5 Trends: From Bimodal to Trimodal

As audiovisual and vision-language learning continue to evolve, research is increasingly shifting toward audio-
visual-language trimodal modeling to address more complex real-world problems. This evolution reflects a natural
progression within the broader paradigm shifts occurring across multimodal research, characterized by a continuation
and amplification of key trends. The transition from bimodal to trimodal modeling brings new challenges and intensifies
existing ones, particularly in task scope, model scale, and training paradigms. We discuss these developments in the
following sections.

5.1 From single-task learning to multitask learning

As we can see from previous sections, due to the diversity of multimodal tasks, research in multimodal learning has
developed in a fragmented manner. This fragmentation slows the transfer of advancements from one task to another,
hindering cross-task communication. For example, Kosmos-2 discretizes location information into tokens [135],
while LITA discretizes temporal information into tokens, two conceptually similar approaches that have evolved
independently [136]. Similarly, model training can be constrained by resource limitations, as some complex tasks
require large-scale models but suffer from limited training data. For instance, CLIP was trained on a dataset of 400M
image-text pairs [25], whereas VisDial [87], a common benchmark for visual dialog, has only 1.2M dialogues. Since
both datasets associate each sample with a single image, a model that is trained only on VisDial for that specific task
effectively utilizes only 0.3% of the data volume to train the CLIP model.

Training models on multiple tasks can leverage a larger data pool, improving model performance. Different task
datasets can complement missing modalities. For example, RefCOCO contains matched text-image pairs but lacks
audio signals [67], while AVE includes audiovisual information but lacks detailed textual descriptions [70]. In the
absence of high-quality audio-visual-textual datasets, these datasets can still contribute to training trimodal models. In
other words, low-resource tasks can benefit from high-resource tasks, reducing data requirements.

Moreover, the inherent similarities among different tasks enable models to learn more generalizable features. For
example, MaPLe enhances the coupling between vision and language prompts by designing multimodal prompt learning
for both branches, allowing more flexible adaptation of representation spaces across various downstream tasks [137].
Similarly, Yang et al. leverage general knowledge acquired by large language models (LLMs) to improve video-based
stress detection for a specific task [138].

Furthermore, task differences help prevent overfitting to a specific dataset and mitigate spurious correlations. For
example, in VQA, models may exploit shortcuts, such as always answering "tennis" when asked "what sport?" due
to dataset biases rather than actual image understanding [139]. Training on diverse action recognition datasets like
Sports-1M [140] and UCF101 [141], which expose models to various sports and their distinctions, can help ensure
more accurate and robust reasoning. As a result, multitask learning serves as a regularization mechanism, enhancing the
model’s generalization ability [142].

5.2 Emergence of Larger Multimodal Models

As the number of modalities increases from two to three, audio-visual-language models grow in size to handle the
added complexity [28]. The strong performance of large language models (LLMs) in language tasks has motivated their
integration into multimodal systems, enabling improved understanding of non-text modalities [48, 68]. This has led
to the rise of Multimodal Large Language Models (MLLMs) as a dominant trend. Larger models, due to their higher
parameter counts, exhibit stronger representational capacity and can learn more complex features [143]. For instance,
in image captioning, increasing model size from a Base (B/16) to a Large (L/14) architecture resulted in consistent
performance gains [143]. Beyond improved representation, large models can store and retrieve broader knowledge,
enhancing both understanding and generation. MLLMs have also been applied to demanding tasks such as fake news
detection, which requires rich domain knowledge; in this context, they achieved over 90% F1 scores across all evaluated
datasets, outperforming prior methods [144]. Furthermore, increased parameter capacity and longer attention windows
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Figure 4: Pretraining methods commonly used in audio-visual-language modeling. The example image and text
are from the MSR-VTT [73] dataset. Figure 4a shows Multimodal contrastive learning; Figure 4b shows masked data
modeling; Figure 4c shows next token prediction;

in large models support better comprehension of extended content. For example, MA-LMM achieved state-of-the-art
results on long-video understanding benchmarks [145], and introduced a Memory Bank Compression (MBC) technique
that leverages temporal redundancy to further improve contextual understanding.

To enable the application of LLMs in audio-visual-language settings, modality-specific features, such as visual and
linguistic representations, must first be extracted using dedicated encoders (Section 2) and then fused through integration
modules (Section 3). These fusion layers serve as adapters, mapping pretrained features from each modality into a shared
representation space compatible with LLM processing [48, 68]. Since full fine-tuning is often impractical on resource-
constrained devices, this paradigm allows for partial training while still achieving competitive performance [146].

In deep learning, the Scaling Law describes how model error (e.g., perplexity) decreases following a power-law as
data, model size, and compute scale proportionally [147]. This principle suggests that larger models trained on more
data can consistently yield improved performance. However, increasing model depth introduces challenges such as
hindered gradient propagation. To address this, techniques like Residual Networks and normalization strategies, Batch
Normalization [148] and Layer Normalization [149], have been introduced to stabilize training and enhance efficiency.

As models scale, emergent capabilities become apparent [37]. These capabilities extend beyond basic alignment
or descriptive tasks, enabling advanced reasoning such as temporal grounding [37] and ambiguity resolution across
modalities, e.g., detecting emotional states when audio and visual signals conflict [62]. In complex downstream tasks
like audiovisual question answering, large models exhibit the ability to synchronize temporal events, model long-range
dependencies [68], and infer causal relationships across modalities. VALOR exemplifies such integration, outperforming
modality-specific baselines and underscoring the strength of large-scale cross-modal learning [37].

Ultimately, this trajectory leads to the development of unified, end-to-end trainable trimodal models that process audio,
visual, and language data within a single framework [48]. Compared to bimodal systems, the trimodal setting introduces
added complexity, such as signal alignment across three streams [32] and the design of efficient cross-modal attention
mechanisms [53]. Nevertheless, large Transformer-based architectures offer the capacity and flexibility needed to
address these challenges, making large trimodal models strong candidates for general-purpose multimodal agents [48].

5.3 From Training from Scratch to Pretrain-Finetune Paradigm

Since model sizes have been increasing, training from scratch becomes difficult due to the datasets and computing
resources. On the other hand, models pretrained on large datasets can be easily adapted to downstream tasks with better
performance than those trained from scratch. Therefore, in the audio-visual-language modeling with large models, the
pretrain-finetune paradigm is becoming more essential compared to bimodal architectures [48, 68].

We discuss three useful approaches to pretrain audio-visual-language models: multimodal contrastive learning, masked
data modeling, and next token prediction. They can be used separately or combined in a flexible manner. An illustration
is shown in Figure 4.

Multimodal Contrastive Learning (MCL) MCL learns to associate corresponding data from different modalities
(e.g., an image and its caption) while distinguishing between non-matching pairs [25]. The core idea is to project
inputs from different modalities into a shared latent space, where representations of matching pairs are close together,
while those of non-matching pairs are pushed apart. By leveraging this approach, multimodal contrastive learning
enables models to learn cross-modal relationships and align information from diverse sources without requiring labelled
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data. It has proven effective in various tasks, such as image captioning, visual question answering, and audiovisual
representation learning, enabling better integration and understanding of multimodal data [28, 150].

Masked Data Modelling (MDM) MDM refers to a self-supervised learning technique where part of the input data is
intentionally masked or hidden, and the model is tasked with predicting the missing information based on the unmasked
portions [35, 151]. This approach leverages the model’s ability to learn useful representations of the data without
requiring labelled examples. This can be applied to various domains, such as text, images, and audio. For example,
in text modelling, MDM could mask words or phrases, and the model would predict the masked content. In images,
random patches or regions could be masked, and the model learns to predict the hidden pixels[32, 152].

Next Token Prediction (NTP) Next Token Prediction (NTP) is widely used for training LLMs [88]. By predicting
the next token based on preceding ones, the model captures the underlying patterns of language data. This capability
naturally extends to tasks that can be reformulated as sequence-to-sequence problems. In the case of training MLLMs,
NTP is adapted by predicting the next token not only with previous ones but also conditioned on other modality
inputs [68]. For example, MEERKAT uses Llama2 as their LLM backbone, which is pretrained with NTP [48].
MEERKAT then adopts audio and visual encoders and is fine-tuned for multimodal downstream tasks, such as
audio-referred image grounding, image-guided audio temporal localization, etc.

6 Challenges and Future Directions

Audio-visual-language modeling is still an ongoing area. In this section, three challenges are introduced and discussed.
Potential future directions are highlighted subsequently for each of them.

6.1 Limited Interpretability of audio-visual-language Models

Building on Section 4, while the audio-visual-language model consistently delivers state-of-the-art performance across
a range of tasks, our understanding of its decision-making process remains limited. We typically observe only the final
outputs, with little insight into the input features driving those decisions [23]. This "black-box" nature is particularly
problematic in high-stakes domains. Furthermore, discrepancies between deployment and testing environments, coupled
with the inherent limitations in training data quality and coverage, heighten the risk of unpredictable model failures [47].
In these settings, it is critical that every model prediction be accompanied by a clear, interpretable rationale to enable
expert verification and to ensure the reliability of the underlying reasoning process.

Cause 1. Uninterpretable latent space Audio-visual-language modeling tends to create entangled representations
where cross-modal relationships, intra-modal features, and task-specific adaptations become inextricably mixed within
the same embedding space [153]. This entanglement prevents researchers from isolating specific types of semantic
relationships or understanding how different modalities contribute to final predictions, ultimately rendering the model’s
decision-making process opaque.

Cause 2. Complexity of deep neural network The sophisticated neural network architectures underlying audio-
visual-language models present fundamental interpretability challenges due to their nonlinear parameter interactions
and their layer depth. These architectures resist straightforward analysis, as their decision-making processes cannot be
decomposed into interpretable individual components or layers. Current interpretability approaches face significant
limitations when applied to audio-visual-language models. Model-agnostic methods [154, 155] produce explanations
that lack the granularity needed for multimodal understanding, while architecture-specific techniques struggle with
the heterogeneous nature of audio-visual-language systems. Transformer-based components suffer from attention
mechanism interpretability gaps [156, 157], CNN-based audiovisual processing remains difficult to visualize in complex
scenarios [158, 159], and spatiotemporal video analysis components [39] present particularly intractable interpretation
challenges. The fundamental issue lies in the disconnect between the model’s internal representational complexity and
our current analytical capabilities, leaving critical aspects of audio-visual-language decision-making opaque [160].

Direction 1. Encouraging semantically-rich latent space To make the latent space more understandable, structured
representation learning might emerge as a promising approach that decomposes high-dimensional embeddings into
functionally distinct subspaces while preserving model expressiveness, involving designing training objectives that
explicitly encourage the separation of different types of semantic information, such as object categories or attributes,
into dedicated representational components, incorporating structured regularization terms that promote orthogonality
between these subspaces while maintaining semantic coherence within each component. This approach comple-
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ments alignment objectives that emphasize cross-modal correspondence by organizing the internal structure of latent
representations, thus facilitating effective cross-modal alignment.

Direction 2. Advancing interpretability methods To address the problem of network complexity, a promising
direction would be advancing hierarchical explanation frameworks using prior knowledge of audio, visual, and language
modalities. This could include establishing principled methods for interpreting cross-modal fusion mechanisms,
developing spatiotemporal visualization techniques that can effectively represent the complex interactions in audio-
visual-language modeling [39, 161], and creating interpretability approaches that leverage the structural properties of
Transformer architectures for multimodal contexts [162, 163, 164].

6.2 Reasoning in Complex Environments

While MLLM models have demonstrated strong capabilities across various tasks in static environments, they continue
to struggle with complex environmental reasoning.

Cause 1. Environments are inherently dynamic When environmental changes are substantial, the distribution of
data may diverge from the real-world distribution, adding complexity to the model’s reasoning process. In real-world
applications, the model interacts with the environment, where its outputs influence the state of the environment,
establishing causal relationships with subsequent inputs. Current models, however, often treat interactions as static,
overlooking the critical role of temporal information [48].

Cause 2. Inconsistency of audio, visual, and language data Currently, datasets with fine-grained feature alignment
remain scarce. By fine-grained alignment, we refer to cases where not only the general scene matches across modalities,
but also detailed elements of the audio track, visual frames, and textual descriptions correspond to the same events at
the same time and location. While models like GroundingGPT [68] benefit from training across various tasks, their
performance improvement does not stem from the availability of finely annotated datasets with precise multimodal
alignment. Additionally, multimodal data is often asynchronous, and even the causal ordering of events may differ,
adding further complexity to the alignment process.

Cause 3. Information is distributed over extended time periods Current video processing systems often use frame
sampling or focus only on short clips to reduce computational load, assuming key information is concentrated in these
segments [59]. However, this assumption is often flawed. Critical information, especially from physical signals, is
distributed over longer durations. As a result, existing models struggle to capture long-range temporal dependencies
effectively [64].

Direction 1. Reinforcement learning (RL) for interactive environment To address the interactive environment,
RL can be introduced. In the training of large language models, RL has already been employed to align with human
reasoning, enabling models to engage in more natural conversations and exhibit improved reasoning capabilities. Future
research could focus on exploring how to adapt and integrate more RL approaches to address reasoning challenges in
complex environments, adding active exploration in the real-world environment [122].

Direction 2. Collecting high-quality datasets To address Cause 2, a direction is to collect datasets with fine-grained
audio-visual-language alignment. Within this fine-grained alignment, ensuring causal consistency across modalities for
specific objects [165] constitutes a stricter and more meaningful criterion. For example, if the audio indicates a dog
barking, the visual modality should causally correspond by showing the dog actively barking, not merely the presence
of a dog. Such causal alignment requires not only correlation but also causation between modalities, enabling richer
multimodal correspondence and more robust cross-modal reasoning and inference.

Direction 3. Augmentation with a memory system From a modeling perspective, current methods typically rely
on frame sampling, and the models themselves lack memory capabilities. While this approach addresses the issue
of information being limited to key frames, it falls short when handling information distributed across extended
periods [138]. Although large models are gradually increasing context length, their capacity remains finite. Research
indicates that, with longer contexts, models tend to prioritize more recent information. To meet the demand for
processing infinite-length inputs, future model architectures must incorporate memory mechanisms. While Neural
Turing Machines [166] and memory-augmented neural networks [167] offer memory features, they cannot be easily
integrated into existing multimodal frameworks. Thus, a key challenge for future research will be how to effectively
incorporate memory modules into these models.
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6.3 Efficiency Constraints

Audio-visual-language multimodal systems face significantly more severe deployment challenges in resource-
constrained edge or embedded scenarios compared to audiovisual and vision-language systems. These challenges stem
from the fundamental complexity of processing three distinct modalities simultaneously while maintaining real-time
performance requirements.

Cause 1. Heterogeneous feature extraction bottlenecks Audio, visual, and language modalities each demand
fundamentally different representational approaches. Audio processing requires capturing spectral-temporal features,
visual processing necessitates extracting spatial textures and shape information, while language processing demands
understanding symbolic embeddings and contextual relationships. As depicted in Table 1, current approaches typically
deploy separate deep encoders for each modality, resulting in parameter counts that scale multiplicatively, creating
substantial computational and memory overhead during both storage and inference phases [168].

Cause 2. Temporal alignment complexity Fusion of audio, visual, and language features requires precise align-
ment of temporal sequences operating at different rates and granularities, while simultaneously executing attention
mechanisms to achieve deep inter-modal interactions. Since each modality must attend not only to its own features but
also respond to information from the other two modalities, fusion computations scale beyond simple linear growth,
further exacerbating performance burdens in resource-constrained environments [37]. The deployment constraints are
particularly acute in applications requiring a strong data security emphasis, where companies must process proprietary
data locally rather than through cloud infrastructure, and in real-time critical systems like autonomous driving and
financial trading that cannot tolerate cloud-based inference latency.

Direction 1. Shared-specific hybrid encoding architecture Future solutions should focus on identifying common
representational spaces across modalities while preserving modality-specific capabilities. This approach involves de-
signing shared lower-level convolutional or transformation layers that extract similar features using common parameters,
followed by lightweight specialized subnetworks at higher levels. Such architecture reduces redundancy and decreases
overall model size while maintaining the understanding required for each input type.

Direction 2. Advanced model compression Current compression techniques, including quantization, pruning, and
distillation, play important roles in deep learning deployment [169, 170, 171]. Future developments should leverage
audio-visual-language system characteristics by implementing modality-specific mixed precision quantization and
sparsification strategies based on differential precision sensitivity across modalities. Input-aware dynamic execution
strategies should be implemented to adaptively balance performance and efficiency, where corresponding subnetworks
can be dynamically disabled or simplified when input signal-to-noise ratios are low or certain modalities are missing.

7 Conclusion

This paper surveys recent advances in audio-visual-language modeling, spanning feature extraction methods (See
Section 2), feature fusion methods (See Section 3), and various understanding and generation tasks (See Section 4). As
discussed in Section 5, most existing methods align modalities through contrastive learning, while Transformer-based
architectures are adopted for more complex multimodal fusion. Large-scale pretraining has become the prevailing
approach, substantially improving task performance but also increasing deployment complexity. As a result, a better
understanding of model behavior and effective model compression are key challenges ahead. Furthermore, current
methods primarily address coarse-grained tasks within short temporal windows, leaving fine-grained reasoning in
complex scenarios an open area for future exploration.

Looking forward, several key challenges remain to be addressed for audio-visual-language models, as discussed in
Section 6. First, improving model interpretability is crucial, including encouraging semantically-structured latent
spaces and developing hierarchical explanation methods to better understand cross-modal fusion. Second, enhancing
reasoning in complex, dynamic environments requires integrating reinforcement learning for interaction, collecting
fine-grained aligned multimodal datasets, and incorporating memory mechanisms to handle long-term context. Third,
efficiency constraints in real-world deployment call for hybrid shared-specific encoding architectures and advanced
modality-aware compression techniques to balance performance and resource usage.

Limitation Although audio, visual, and language modalities are all semantically rich, each encompasses diverse
subtypes. For example, the audio modality includes both speech, which significantly overlaps with language, and music,
which differs from speech in terms of density, semantics, and structure. Similar subtypes exist within the visual and
language modalities. While methods across subtypes may share common characteristics, they also exhibit important
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differences. This paper focuses on general-purpose models that integrate audio, visual, and language modalities without
emphasizing the specific distinctions among individual subtypes.
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